首页 新闻资讯内容详情

Twitter引擎起火系统失灵,如果成本现金流高达30亿美元的简单介绍

2023-01-22 11 adminn8
Twitter引擎起火系统失灵,如果成本现金流高达30亿美元的简单介绍

站点名称:Twitter引擎起火系统失灵,如果成本现金流高达30亿美元的简单介绍

所属分类:新闻资讯

相关标签: # Twitter引擎起火系统失灵 # 如果成本现金流高达30亿美元

官方网址:

SEO查询: 爱站网 站长网 5118

进入网站

站点介绍

今天给各位分享Twitter引擎起火系统失灵,如果成本现金流高达30亿美元的知识,其中也会对进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

企业价值=现金流/(资本成本-增长率)这个公式怎么推到出来的,理解不了

什么是增长相对价值?来源及定义

纳撒尼尔·马斯(Nathaniel J. Mass)提出了一个新的战略性衡量标准,帮助CFO解决老大难问题:是投资以实现增长好呢,还是削减成本好?

马斯是卡森巴赫事务所(Katzenbach Partners)的高级顾问,同时还是位于纽约的投资银行、咨询服务公司新泽西州马斯事务所(N.J. Mass Associates)的执行董事,他设计了一个公式,帮助财务主管们在决定花钱还是省钱时更加有章可循。这个公式被称为“增长的相对价值”(RVG),将企业通过收入增长与通过提高利润所创造的股东价值进行比较。理论上,这能让经理们把决策与投资者的预期联系得更紧密,创造更多的股东价值。“RVG所衡量的是决定应该投资增长还是削减成本的经济动力。”马斯说道。

在收入增长和利润增加之间明显存在此消彼长的关系,这可能会让经理们认为,收入的增加和利润的提高会带来同等的股东价值。RVG揭示出两者的差别,所以马斯坚持认为人们需要这一公式。此外,这位前麦肯锡顾问强调说,和许多经理人的错误理解相反,他的方法表明增长率和利润率并不是不可兼容的。马斯甚至还暗示,RVG可以让财务经理们发现他们战略中的瑕疵、确定投资目标,并更有效地针对某一产品或服务来削减成本。

增长相对价值反映出,企业增长率提高一个百分点将比经营利润率提高一个百分点创造的股东价值高数倍。 如果这个倍数很大的话,那么采用增长战略对于企业来说就更有价值。

例如,如果RVG的值为3,就意味着企业提高一个百分点的增长率就能够比提高一个百分点的经营利润率,创造出高达3倍的股东价值。

Mass还认为,增长战略在创造股东价值的潜力方面也要企业通常所采取的成本削减战略。 在发表于2005年4月号的一篇文章中,Mass更指出,增长战略的实际价值要比管理者们所能想象的大得多,尤其是从长远来看。

增长相对价值的计算公式

RVG的计算方法是,用收入每增长一个百分点创造的价值除以利润每增长一个百分点创造的价值。

要计算RVG,就必须估计公司股东的平均预期增长率。马斯的做法是建立一个现金流贴现模型:企业价值(市值加未偿还的负债)等于公司的可持续现金流除以WACC,加权平均资本成本与投资者的预期增长率(EGR)之差。算出企业的预期增长率后,就可以把它用在公司的收入增长上,计算出现金流每增加1个百分点企业价值增加多少。接下来,马斯计算出毛利率提高1个百分点带来的企业价值,方法是用毛利率提高后增加的现金流除以企业WACC和EGR之差。最后,他用收入增长率提高1个百分点所增加的企业价值除以毛利率提高1个百分点所增加的企业价值,计算出两个企业价值之比。一般说来,这个比例越高,公司就越应该重点关注收入的增长;比例越低,就越应该削减成本。如果RVG超过2,就应该考虑采用增长战略。

RVG的计算

范例公司的数据

企业价值(EV) 10亿美元 ,收入 4亿美元 ,现金流(CF) 4000万美元

第一步:建立现金流贴现模型

EV=CF/(WACC-g)

g = 预期增长率(EGR)

第二步:计算预期增长率

10亿美元=4000万美元/(10%-g)

g = 6%

第三步:计算增长率增加1%所带来价值

EV=4000万美元/[10%-(6%+1%)] = 13.33亿美元

增长的价值为:13.33-10=3.33亿美元

第四步:计算利润率增加1%所带来的价值

增加的现金流:4000万美元×1%×(1-35%) = 260万美元

利润提高所带来的价值:260万美元/(10%-6%) = 6500万美元

第五步:决定增长的相对价值(RVG)

RVG = 收入增长所带来的价值/利润提高所带来的价值

= 3.33亿美元/6500万美元=5.1

增长相对价值的应用

制定企业投资决策。

制定企业战略。

制定企业运营战略。

聚焦企业长期经营目标。

视企业增长潜力为价值源泉。

理解股东期望。

绩效管理。

高管薪酬设计。

增长相对价值优势。 优点

简单易用,方便操作。

为企业找到兼顾增长和利润的平衡点。

为战略事业部找到兼顾增长和利润的平衡点。

聚焦企业长期经营目标。

展示价值源泉的增长潜力。

帮助管理人员理解股东期望。

在绩效管理与高管薪酬设计方面亦有帮助。

增长相对价值的局限

根据运营利润来计算利润收入, 尽管相对易于操作, 但可信度收到局限。

技术层面的缺陷:

DCF,贴现现金流模型不区别短期和长期。

资本成本与增长回报预期均放在企业层面来考虑。

对并购拉动的增长和企业自身的有机增长未作区分。

RVG只能够作为一个相对的评估手段: 不能够反映增长和利润的实际价值贡献。

RVG帮助投资者放眼长远。 但是,它并没有反对或阻止投资者或分析家的短期投资行为。

对无形资产项目如何评估?

增长相对价值的假定条件

简单的数字计算也能够帮助企业做出正确战略选择和投资决策。

计算的准确性不影响大局。

有人认为RVG并非完全原创。德勤会计师事务所的合伙人布兰特·沃特曼(Brent Wortman)把RVG模型和杜邦模型进行了类比,杜邦模型根据收入的增长、毛利率和资产周转率来预测未来的价值。但马斯坚持说他是用新的方式来使用这个模型,他指出:利润、资产周转率、与资本成本相对的预期增长率,其中两个或三个因素合在一起,才是决定RVG的主要推动力。

RVG是不完美的。有人担心,如果分母计算是线性的,如1美元的毛利带来1美元的现金流,而在分子的计算中则用永续年金法来处理现金流,那两者放在一起就可能出问题。为此,马斯设计出一个分阶段的版本,用以计算特定时间段内的增长率,这对于需要在增长减缓时控制大量支出的年轻企业而言尤为重要。一般说来,马斯建议企业每两年就重新计算一次RVG。

马斯还向那些担心增长战略会妨碍赢利情况的人再三作出保证。他指出:“RVG假定实现增长没有成本代价,即在目前利润率不变前提下增长。”为此,RVG的分子必须能反映风险。

是投资以实现增长好呢,还是削减成本好?

许多时候,大多数公司认为自己知道何时该省钱、何时该花钱。但是,美国的企业目前正处于特殊时期——它们不断削减成本,但眼看着现金越积越多,企业是否该重回兼并收购的老路呢?

纳撒尼尔·马斯(Nathaniel Mass)的新方法恰逢其时。马斯是卡森巴赫事务所(Katzenbach Partners)的高级顾问,同时还是位于纽约的投资银行、咨询服务公司新泽西州马斯事务所(N.J. Mass Associates)的执行董事,他设计了一个公式,帮助财务主管们在决定花钱还是省钱时更加有章可循。这个公式被称为“增长的相对价值”(RVG),将企业通过收入增长与通过提高利润所创造的股东价值进行比较。理论上,这能让经理们把决策与投资者的预期联系得更紧密,创造更多的股东价值。“RVG所衡量的是决定应该投资增长还是削减成本的经济动力。”马斯说道。

在收入增长和利润增加之间明显存在此消彼长的关系,这可能会让经理们认为,收入的增加和利润的提高会带来同等的股东价值。RVG揭示出两者的差别,所以马斯坚持认为人们需要这一公式。此外,这位前麦肯锡顾问强调说,和许多经理人的错误理解相反,他的方法表明增长率和利润率并不是不可兼容的。马斯甚至还暗示,RVG可以让财务经理们发现他们战略中的瑕疵、确定投资目标,并更有效地针对某一产品或服务来削减成本。

要计算RVG,就必须估计公司股东的平均预期增长率。马斯的做法是建立一个现金流贴现模型:企业价值(市值加未偿还的负债)等于公司的可持续现金流除以加权平均资本成本(WACC)与投资者的预期增长率(EGR)之差。算出企业的预期增长率后,就可以把它用在公司的收入增长上,计算出现金流每增加1个百分点企业价值增加多少。接下来,马斯计算出毛利率提高1个百分点带来的企业价值,方法是用毛利率提高后增加的现金流除以企业WACC和EGR之差。最后,他用收入增长率提高1个百分点所增加的企业价值除以毛利率提高1个百分点所增加的企业价值,计算出两个企业价值之比。一般说来,这个比例越高,公司就越应该重点关注收入的增长;比例越低,就越应该削减成本。如果RVG超过2,就应该考虑采用增长战略。

RVG在宝洁

我们用宝洁2004年的财务业绩来举例说明RVG的功效。宝洁的企业价值为1570亿美元,WACC为8%,可持续现金流为56亿美元,由此可以算出:收入每增加1个百分点,宝洁的股东价值就增加530亿美元,而毛利率每提高1个百分点,股东价值会增加73.5亿美元。前者是后者的7.2倍,因此宝洁的RVG是7.2。

毫无疑问,马斯认为宝洁目前改善经营状况的重点应放在提高增长率,而不是采取人们通常认为的削减成本的方法。宝洁最近以570亿美元的价格收购了吉列,就是一个例证。吉列的股东预期增长率为3.1%,比宝洁低了整整1个百分点。但由于吉列有强劲的现金流和很高的毛利率,它的RVG是10.4,比宝洁的RVG高出3个点。因此,按照马斯的计算,只要把吉列的增长率提高1个百分点,宝洁的企业价值将再增加200亿美元,而鉴于宝洁出色的行销能力,他认为做到这点并不难。这增加的200亿美元是宝洁为并购吉列支付的溢价的4倍。

另外,RVG还可以提醒管理者们不要盲目追求增长。例如,电子数据系统公司2004年的RVG只有0.7,通过将毛利率增加1个百分点,可以增加14.5亿美元的市值,也可以通过提高收入增长率来增加10亿美元的市值。在马斯看来,这表明该公司在改善其利润和现金流之前,不应该过多地投资以求增长。事实上,尽管分析师们说该公司所在的企业电脑服务业提供了良好的增长前景,新任CEO迈克尔·乔丹(Michael Jordan)却一直在削减成本。在2004年,该公司实施了一项30亿美元的削减成本计划,包括裁员约2万人,目标是把毛利率从现在的1.1%提高到2007年时的8%。

也有人认为RVG并非完全原创。德勤会计师事务所的合伙人布兰特·沃特曼(Brent Wortman)把RVG模型和杜邦模型进行了类比,杜邦模型根据收入的增长、毛利率和资产周转率来预测未来的价值。但马斯坚持说他是用新的方式来使用这个模型,他指出:利润、资产周转率、与资本成本相对的预期增长率,其中两个或三个因素合在一起,才是决定RVG的主要推动力。

RVG是不完美的。有人担心,如果分母计算是线性的,如1美元的毛利带来1美元的现金流,而在分子的计算中则用永续年金法来处理现金流,那两者放在一起就可能出问题。为此,马斯设计出一个分阶段的版本,用以计算特定时间段内的增长率,这对于需要在增长减缓时控制大量支出的年轻企业而言尤为重要。一般说来,马斯建议企业每两年就重新计算一次RVG。

马斯还向那些担心增长战略会妨碍赢利情况的人再三作出保证。他指出:“RVG假定实现增长没有成本代价,即在目前利润率不变前提下增长。”为此,RVG的分子必须能反映风险。

谁会用它

由于RVG只有18个月的历史,没有几个财务主管熟悉它,而能对其价值发表意见的就更少了。但很快他们就可能希望自己熟悉它了。例如,辉瑞公司2004年的RVG为7.5就引起了对它战略的疑问。虽然该公司一项为期3年的重组和削减成本项目正实施到一半,目标是到2008年时能每年节约40亿美元,而CFO艾伦·莱文(Alan Levin)表示,这样做的目的是节省出现金用于研发和新产品的上市。但像辉瑞那么高的RVG显示,它不需要如此激进地削减成本,关键是看导致RVG高企的因素是预期增长率较高,还是资本成本较低。

马斯不愿意披露导致辉瑞RVG高企的真正原因,而莱文认为辉瑞的预期增长率还没有达到应有的高度。他承认:“辉瑞目前的股价没有完全反映出未来的增长潜力。”但今年6月,辉瑞没有进行投资以求增长,而是批准了一项50亿美元的股票回购计划,而在2004年10月辉瑞刚刚耗资50亿美元回购股票。莱文解释说:“我们相信股价是很便宜的。”

虽然RVG不明确针对股利或股票回购问题提出解决方案,但马斯指出,RVG大于1或2的企业应该首先考虑投资以获得增长,而不是给股东分红。如果股东的预期在升高,则应该考虑分红,因为在这种情况下,无论花钱还是省钱都不能增加股东价值。此外,即便是对于RVG达到两位数的企业,增长也会难以实现。路易资本公司(Louis Capital)的研究主管罗伯特·范·巴腾博格(Robbert Van Batenburg)对RVG高的企业的财务经理表示同情。“如果实现增长很简单,那么所有企业都会以此为目标。”他说。马斯对此十分认同。他承认,实施和执行增长战略“永远是说的比做的容易”。

如何购买银行

增长的相对价值(RVG)显示,通过收购而实现的收入没有创造什么价值。

RVG解决的另一个棘手问题,是决定应该通过自身的努力还是通过收购来实现增长。事实上,RVG强调,如果收购仅带来收入而没有改善毛利率,那么收购就没有创造价值。

纳撒尼尔·马斯最近把RVG应用于银行业,明显地说明了这一点。他发现,大银行确实有高RVG,但这主要是因为它们资本成本低,外加有充裕的现金流。事实上,它们的预期增长率实在不怎么样。例如,美洲银行的RVG在2004年达到令人乍舌的18,而它的预期增长率只有1%。如果仅从该行因收购而增加的收入看,它的预期增长率将会是7.6%。该行通过收购富利银行增加了142亿美元的收入,通过收购国家处理公司(National Processing)增加了5.15亿美元的收入。但由于银行在支付了高额收购溢价后未能发挥协同增效的优势,投资者在贴现这些新增收入时所采用的贴现率,远远高于他们贴现银行自身增长的收入时的贴现率,两者之间差距预计为3个百分点。

其它银行的结果大致相同。JP摩根大通银行和美联银行(Wachovia)的RVG都超过14,但它们的预期增长率只有区区2%。“大多数投资者不会为收购带来的收入增长付钱,除非公司的毛利率有所提高,”贝尔斯登的分析师戴维·希尔德(David Hilder)说。他指出,对大银行来说,“规模的增长和效率的提高之间不存在线性关系。”

RVG的计算

范例公司的数据

企业价值(EV) 10亿美元

收入 4亿美元

现金流(CF) 4000万美元

第一步:建立现金流贴现模型

EV=CF/(WACC-g)

g = 预期增长率(EGR)

第二步:计算预期增长率

10亿美元=4000万美元/(10%-g)

g = 6%

第三步:计算增长率增加1%所带来价值

EV=4000万美元/[10%-(6%+1%)] = 13.33亿美元

增长的价值为:13.33-10=3.33亿美元

第四步:计算利润率增加1%所带来的价值

增加的现金流:4000万美元×1%×(1-35%) = 260万美元

利润提高所带来的价值:260万美元/(10%-6%) = 6500万美元

第五步:决定增长的相对价值(RVG)

RVG = 收入增长所带来的价值/利润提高所带来的价值

= 3.33亿美元/6500万美元=5.1

方榆故铉谛邹厚旻荣飒闻低岑蓉琪抚铴溶泳洲波

如何用大数据炒股

我们如今生活在一个数据爆炸的世界里。百度每天响应超过60亿次的搜索请求,日处理数据超过100PB,相当于6000多座中国国家图书馆的书籍信息量总和。新浪微博每天都会发布上亿条微博。在荒无人烟的郊外,暗藏着无数大公司的信息存储中心,24小时夜以继日地运转着。

克托·迈尔-舍恩伯格在《大数据时代》一书中认为,大数据的核心就是预测,即只要数据丰富到一定程度,就可预测事情发生的可能性。例如,“从一个人乱穿马路时行进的轨迹和速度来看他能及时穿过马路的可能性”,或者通过一个人穿过马路的速度,预测车子何时应该减速从而让他及时穿过马路。

那么,如果把这种预测能力应用在股票投资上,又会如何?

目前,美国已经有许多对冲基金采用大数据技术进行投资,并且收获甚丰。中国的中证广发百度百发100指数基金(下称百发100),上线四个多月以来已上涨68%。

和传统量化投资类似,大数据投资也是依靠模型,但模型里的数据变量几何倍地增加了,在原有的金融结构化数据基础上,增加了社交言论、地理信息、卫星监测等非结构化数据,并且将这些非结构化数据进行量化,从而让模型可以吸收。

由于大数据模型对成本要求极高,业内人士认为,大数据将成为共享平台化的服务,数据和技术相当于食材和锅,基金经理和分析师可以通过平台制作自己的策略。

量化非结构数据

不要小看大数据的本领,正是这项刚刚兴起的技术已经创造了无数“未卜先知”的奇迹。

2014年,百度用大数据技术预测命中了全国18卷中12卷高考作文题目,被网友称为“神预测”。百度公司人士表示,在这个大数据池中,包含互联网积累的用户数据、历年的命题数据以及教育机构对出题方向作出的判断。

在2014年巴西世界杯比赛中,Google亦通过大数据技术成功预测了16强和8强名单。

从当年英格兰报社的信鸽、费城股票交易所的信号灯到报纸电话,再到如今的互联网、云计算、大数据,前沿技术迅速在投资领域落地。在股票策略中,大数据日益崭露头角。

做股票投资策略,需要的大数据可以分为结构化数据和非结构化数据。结构化数据,简单说就是“一堆数字”,通常包括传统量化分析中常用的CPI、PMI、市值、交易量等专业信息;非结构化数据就是社交文字、地理位置、用户行为等“还没有进行量化的信息”。

量化非结构化就是用深度模型替代简单线性模型的过程,其中所涉及的技术包括自然语言处理、语音识别、图像识别等。

金融大数据平台-通联数据CEO王政表示,通联数据采用的非结构化数据可以分为三类:第一类和人相关,包括社交言论、消费、去过的地点等;第二类与物相关,如通过正在行驶的船只和货车判断物联网情况;第三类则是卫星监测的环境信息,包括汽车流、港口装载量、新的建筑开工等情况。

卫星监测信息在美国已被投入使用,2014年Google斥资5亿美元收购了卫星公司Skybox,从而可以获得实施卫星监测信息。

结构化和非结构化数据也常常相互转化。“结构化和非结构化数据可以形象理解成把所有数据装在一个篮子里,根据应用策略不同相互转化。例如,在搜索频率调查中,用户搜索就是结构化数据;在金融策略分析中,用户搜索就是非结构化数据。”百度公司人士表示。

华尔街拿着丰厚薪水的分析师们还不知道,自己的雇主已经将大量资本投向了取代自己的机器。

2014年11月23日,高盛向Kensho公司投资1500万美元,以支持该公司的大数据平台建设。该平台很像iPhone里的Siri,可以快速整合海量数据进行分析,并且回答投资者提出的各种金融问题,例如“下月有飓风,将对美国建材板块造成什么影响?”

在Kensho处理的信息中,有80%是“非结构化”数据,例如政策文件、自然事件、地理环境、科技创新等。这类信息通常是电脑和模型难以消化的。因此,Kensho的CEO Daniel Nadler认为,华尔街过去是基于20%的信息做出100%的决策。

既然说到高盛,顺便提一下,这家华尔街老牌投行如今对大数据可谓青睐有加。除了Kensho,高盛还和Fortress信贷集团在两年前投资了8000万美元给小额融资平台On Deck Capital。这家公司的核心竞争力也是大数据,它利用大数据对中小企业进行分析,从而选出值得投资的企业并以很快的速度为之提供短期贷款。

捕捉市场情绪

上述诸多非结构化数据,归根结底是为了获得一个信息:市场情绪。

在采访中,2013年诺贝尔经济学奖得主罗伯特•席勒的观点被无数采访对象引述。可以说,大数据策略投资的创业者们无一不是席勒的信奉者。

席勒于上世纪80年代设计的投资模型至今仍被业内称道。在他的模型中,主要参考三个变量:投资项目计划的现金流、公司资本的估算成本、股票市场对投资的反应(市场情绪)。他认为,市场本身带有主观判断因素,投资者情绪会影响投资行为,而投资行为直接影响资产价格。

然而,在大数据技术诞生之前,市场情绪始终无法进行量化。

回顾人类股票投资发展史,其实就是将影响股价的因子不断量化的过程。

上世纪70年代以前,股票投资是一种定性的分析,没有数据应用,而是一门主观的艺术。随着电脑的普及,很多人开始研究驱动股价变化的规律,把传统基本面研究方法用模型代替,市盈率、市净率的概念诞生,量化投资由此兴起。

量化投资技术的兴起也带动了一批华尔街大鳄的诞生。例如,巴克莱全球投资者(BGI)在上世纪70年代就以其超越同行的电脑模型成为全球最大的基金管理公司;进入80年代,另一家基金公司文艺复兴(Renaissance)年均回报率在扣除管理费和投资收益分成等费用后仍高达34%,堪称当时最佳的对冲基金,之后十多年该基金资产亦十分稳定。

“从主观判断到量化投资,是从艺术转为科学的过程。”王政表示,上世纪70年代以前一个基本面研究员只能关注20只到50只股票,覆盖面很有限。有了量化模型就可以覆盖所有股票,这就是一个大的飞跃。此外,随着计算机处理能力的发展,信息的用量也有一个飞跃变化。过去看三个指标就够了,现在看的指标越来越多,做出的预测越来越准确。

随着21世纪的到来,量化投资又遇到了新的瓶颈,就是同质化竞争。各家机构的量化模型越来越趋同,导致投资结果同涨同跌。“能否在看到报表数据之前,用更大的数据寻找规律?”这是大数据策略创业者们试图解决的问题。

于是,量化投资的多米诺骨牌终于触碰到了席勒理论的第三层变量——市场情绪。

计算机通过分析新闻、研究报告、社交信息、搜索行为等,借助自然语言处理方法,提取有用的信息;而借助机器学习智能分析,过去量化投资只能覆盖几十个策略,大数据投资则可以覆盖成千上万个策略。

基于互联网搜索数据和社交行为的经济预测研究,已逐渐成为一个新的学术热点,并在经济、社会以及健康等领域的研究中取得了一定成果。在资本市场应用上,研究发现搜索数据可有效预测未来股市活跃度(以交易量指标衡量)及股价走势的变化。

海外就有学术研究指出,公司的名称或者相关关键词的搜索量,与该公司的股票交易量正相关。德国科学家Tobias Preis就进行了如此研究:Tobias利用谷歌搜索引擎和谷歌趋势(Google Trends),以美国标普500指数的500只股票为其样本,以2004年至2010年为观察区间,发现谷歌趋势数据的公司名称搜索量和对应股票的交易量,在每周一次的时间尺度上有高度关联性。也就是说,当某个公司名称在谷歌的搜索量活动增加时,无论股票的价格是上涨或者下跌,股票成交量与搜索量增加;反之亦然,搜索量下降,股票成交量下降。以标普500指数的样本股为基础,依据上述策略构建的模拟投资组合在六年的时间内获得了高达329%的累计收益。

在美国市场上,还有多家私募对冲基金利用Twitter和Facebook的社交数据作为反映投资者情绪和市场趋势的因子,构建对冲投资策略。利用互联网大数据进行投资策略和工具的开发已经成为世界金融投资领域的新热点。

保罗·霍丁管理的对冲基金Derwent成立于2011年5月,注册在开曼群岛,初始规模约为4000万美元, 2013年投资收益高达23.77%。该基金的投资标的包括流动性较好的股票及股票指数产品。

通联数据董事长肖风在《投资革命》中写道,Derwent的投资策略是通过实时跟踪Twitter用户的情绪,以此感知市场参与者的“贪婪与恐惧”,从而判断市场涨跌来获利。

在Derwent的网页上可以看到这样一句话:“用实时的社交媒体解码暗藏的交易机会。”保罗·霍丁在基金宣传册中表示:“多年以来,投资者已经普遍接受一种观点,即恐惧和贪婪是金融市场的驱动力。但是以前人们没有技术或数据来对人类情感进行量化。这是第四维。Derwent就是要通过即时关注Twitter中的公众情绪,指导投资。”

另一家位于美国加州的对冲基金MarketPsych与汤普森·路透合作提供了分布在119个国家不低于18864项独立指数,比如每分钟更新的心情状态(包括乐观、忧郁、快乐、害怕、生气,甚至还包括创新、诉讼及冲突情况等),而这些指数都是通过分析Twitter的数据文本,作为股市投资的信号。

此类基金还在不断涌现。金融危机后,几个台湾年轻人在波士顿组建了一家名为FlyBerry的对冲基金,口号是“Modeling the World(把世界建模)”。它的投资理念全部依托大数据技术,通过监测市场舆论和行为,对投资做出秒速判断。

关于社交媒体信息的量化应用,在股票投资之外的领域也很常见:Twitter自己也十分注重信息的开发挖掘,它与DataSift和Gnip两家公司达成了一项出售数据访问权限的协议,销售人们的想法、情绪和沟通数据,从而作为顾客的反馈意见汇总后对商业营销活动的效果进行判断。从事类似工作的公司还有DMetics,它通过对人们的购物行为进行分析,寻找影响消费者最终选择的细微原因。

回到股票世界,利用社交媒体信息做投资的公司还有StockTwits。打开这家网站,首先映入眼帘的宣传语是“看看投资者和交易员此刻正如何讨论你的股票”。正如其名,这家网站相当于“股票界的Twitter”,主要面向分析师、媒体和投资者。它通过机器和人工相结合的手段,将关于股票和市场的信息整理为140字以内的短消息供用户参考。

此外,StockTwits还整合了社交功能,并作为插件可以嵌入Twitter、Facebook和LinkedIn等主要社交平台,让人们可以轻易分享投资信息。

另一家公司Market Prophit也很有趣。这家网站的宣传语是“从社交媒体噪音中提炼市场信号”。和StockTwits相比,Market Prophit更加注重大数据的应用。它采用了先进的语义分析法,可以将Twitter里的金融对话量化为“-1(极度看空)”到“1(极度看多)”之间的投资建议。网站还根据语义量化,每天公布前十名和后十名的股票热度榜单。网站还设计了“热度地图”功能,根据投资者情绪和意见,按照不同板块,将板块内的个股按照颜色深浅进行标注,谁涨谁跌一目了然。

中国原创大数据指数

尽管大数据策略投资在美国貌似炙手可热,但事实上,其应用尚仅限于中小型对冲基金和创业平台公司。大数据策略投资第一次被大规模应用,应归于中国的百发100。

百度金融中心相关负责人表示,与欧美等成熟资本市场主要由理性机构投资者构成相比,东亚尤其是中国的股票类证券投资市场仍以散户为主,因此市场受投资者情绪和宏观政策性因素影响很大。而个人投资者行为可以更多地反映在互联网用户行为大数据上,从而为有效地预测市场情绪和趋势提供了可能。这也就是中国国内公募基金在应用互联网大数据投资方面比海外市场并不落后、甚至领先的原因。

百发100指数由百度、中证指数公司、广发基金联合研发推出,于2014年7月8日正式对市场发布,实盘运行以来一路上涨,涨幅超过60%。跟踪该指数的指数基金规模上限为30亿份,2014年9月17日正式获批,10月20日发行时一度创下26小时疯卖18亿份的“神话”。

外界都知道百发100是依托大数据的指数基金,但其背后的细节鲜为人知。

百发100数据层面的分析分为两个层面,即数据工厂的数据归集和数据处理系统的数据分析。其中数据工厂负责大数据的收集分析,例如将来源于互联网的非结构化数据进行指标化、产品化等数据量化过程;数据处理系统,可以在数据工厂递交的大数据中寻找相互统计关联,提取有效信息,最终应用于策略投资。

“其实百发100是在传统量化投资技术上融合了基于互联网大数据的市场走势和投资情绪判断。”业内人士概括道。

和传统量化投资类似,百发100对样本股的甄选要考虑财务因子、基本面因子和动量因子,包括净资产收益率(ROE)、资产收益率(ROA)、每股收益增长率(EPS)、流动负债比率、企业价值倍数(EV/EBITDA)、净利润同比增长率、股权集中度、自由流通市值以及最近一个月的个股价格收益率和波动率等。

此外,市场走势和投资情绪是在传统量化策略基础上的创新产物,也是百发100的核心竞争力。接近百度的人士称,市场情绪因子对百发100基金起决定性作用。

百度金融中心相关负责人是罗伯特•席勒观点的支持者。他认为,投资者行为和情绪对资产价格、市场走势有着巨大的影响。因此“通过互联网用户行为大数据反映的投资市场情绪、宏观经济预期和走势,成为百发100指数模型引入大数据因子的重点”。

传统量化投资主要着眼点在于对专业化金融市场基本面和交易数据的应用。但在百度金融中心相关业务负责人看来,无论是来源于专业金融市场的结构化数据,还是来源于互联网的非结构化数据,都是可以利用的数据资源。因此,前文所述的市场情绪数据,包括来源于互联网的用户行为、搜索量、市场舆情、宏观基本面预期等等,都被百度“变废为宝”,从而通过互联网找到投资者参与特征,选出投资者关注度较高的股票。

“与同期沪深300指数的表现相较,百发100更能在股票市场振荡时期、行业轮动剧烈时期、基本面不明朗时期抓住市场热点、了解投资者情绪、抗击投资波动风险。”百度金融中心相关负责人表示。

百发100选取的100只样本股更换频率是一个月,调整时间为每月第三周的周五。

业内人士指出,百发100指数的月收益率与中证100、沪深300、中证500的相关性依次提升,说明其投资风格偏向中小盘。

但事实并非如此。从样本股的构成来说,以某一期样本股为例,样本股总市值6700亿元,占A股市值4.7%。样本股的构成上,中小板21只,创业板4只,其余75只样本股均为大盘股。由此可见,百发100还是偏向大盘为主、反映主流市场走势。

样本股每个月的改变比例都不同,最极端的时候曾经有60%进行了换仓。用大数据预测热点变化,市场热点往往更迭很快;但同时也要考虑交易成本。两方面考虑,百度最后测算认为一个月换一次仓位为最佳。

样本股对百发100而言是核心机密——据说“全世界只有基金经理和指数编制机构负责人两个人知道”——都是由机器决定后,基金经理分配给不同的交易员建仓买入。基金经理也没有改变样本股的权利。

展望未来,百度金融中心相关负责人踌躇满志,“百发100指数及基金的推出,只是我们的开端和尝试,未来将形成多样化、系列投资产品。”

除了百发100,目前市场上打着大数据旗帜的基金还有2014年9月推出的南方-新浪I100和I300指数基金。

南方-新浪I100和I300是由南方基金、新浪财经和深圳证券信息公司三方联合编制的。和百发100类似,也是按照财务因子和市场情绪因子进行模型打分,按照分值将前100和前300名股票构成样本股。推出至今,这两个指数基金分别上涨了10%左右。

正如百发100的市场情绪因子来自百度,南方-新浪I100和I300的市场情绪因子全部来自新浪平台。其中包括用户在新浪财经对行情的访问热度、对股票的搜索热度;用户在新浪财经对股票相关新闻的浏览热度;股票相关微博的多空分析数据等。

此外,阿里巴巴旗下的天弘基金也有意在大数据策略上做文章。据了解,天弘基金将和阿里巴巴合作,推出大数据基金产品,最早将于2015年初问世。

天弘基金机构产品部总经理刘燕曾对媒体表示,“在传统的调研上,大数据将贡献于基础资产的研究,而以往过度依赖线下研究报告。大数据将视野拓展至了线上的数据分析,给基金经理选股带来新的逻辑。”

在BAT三巨头中,腾讯其实是最早推出指数基金的。腾讯与中证指数公司、济安金信公司合作开发的“中证腾安价值100指数”早在2013年5月就发布了,号称是国内第一家由互联网媒体与专业机构编制发布的A股指数。不过,业内人士表示,有关指数并没有真正应用大数据技术。虽然腾讯旗下的微信是目前最热的社交平台,蕴藏了大量的社交数据,但腾讯未来怎么开发,目前还并不清晰。

大数据投资平台化

中欧商学院副教授陈威如在其《平台战略》一书中提到,21世纪将成为一道分水岭,人类商业行为将全面普及平台模式,大数据金融也不例外。

然而,由于大数据模型对成本要求极高,就好比不可能每家公司都搭建自己的云计算系统一样,让每家机构自己建设大数据模型,从数据来源和处理技术方面看都是不现实的。业内人士认为,大数据未来必将成为平台化的服务。

目前,阿里、百度等企业都表示下一步方向是平台化。

蚂蚁金服所致力搭建的平台,一方面包括招财宝一类的金融产品平台,另一方面包括云计算、大数据服务平台。蚂蚁金服人士说,“我们很清楚自己的优势不是金融,而是包括电商、云计算、大数据等技术。蚂蚁金服希望用这些技术搭建一个基础平台,把这些能力开放出去,供金融机构使用。”

百度亦是如此。接近百度的人士称,未来是否向平台化发展,目前还在讨论中,但可以确定的是,“百度不是金融机构,目的不是发产品,百发100的意义在于打造影响力,而非经济效益。”

当BAT还在摸索前行时,已有嗅觉灵敏者抢占了先机,那就是通联数据。

通联数据股份公司(DataYes)由曾任博时基金副董事长肖风带队创建、万向集团投资成立,总部位于上海,公司愿景是“让投资更容易,用金融服务云平台提升投资管理效率和投研能力”。该平台7月上线公测,目前已拥有130多家机构客户,逾万名个人投资者。

通联数据目前有四个主要平台,分别是通联智能投资研究平台、通联金融大数据服务平台、通联多资产投资管理平台和金融移动办公平台。

通联智能投资研究平台包括雅典娜-智能事件研究、策略研究、智能研报三款产品,可以对基于自然语言的智能事件进行策略分析,实时跟踪市场热点,捕捉市场情绪。可以说,和百发100类似,其核心技术在于将互联网非结构化数据的量化使用。

通联金融大数据服务平台更侧重于专业金融数据的分析整理。它可以提供公司基本面数据、国内外主要证券、期货交易所的行情数据、公司公告数据、公关经济、行业动态的结构化数据、金融新闻和舆情的非结构化数据等。

假如将上述两个平台比作“收割机”,通联多资产投资管理平台就是“厨房”。在这个“厨房”里,可以进行全球跨资产的投资组合管理方案、订单管理方案、资产证券化定价分析方案等。

通联数据可以按照主题热点或者自定义关键字进行分析,构建知识图谱,将相关的新闻和股票提取做成简洁的分析框架。例如用户对特斯拉感兴趣,就可以通过主题热点看到和特斯拉相关的公司,并判断这个概念是否值得投资。“过去这个搜集过程要花费几天时间,现在只需要几分钟就可以完成。”王政表示。

“通联数据就好比一家餐馆,我们把所有原料搜集来、清洗好、准备好,同时准备了一个锅,也就是大数据存储平台。研究员和基金经理像厨师一样,用原料、工具去‘烹制’自己的策略。”王政形容道。

大数据在平台上扮演的角色,就是寻找关联关系。人类总是习惯首先构建因果关系,继而去倒推和佐证。机器学习则不然,它可以在海量数据中查获超越人类想象的关联关系。正如维克托`迈尔-舍恩伯格在《大数据时代》中所提到的,社会需要放弃它对因果关系的渴求,而仅需关注相互关系。

例如,美国超市沃尔玛通过大数据分析,发现飓风用品和蛋挞摆在一起可以提高销量,并由此创造了颇大的经济效益。如果没有大数据技术,谁能将这毫无关联的两件商品联系在一起?

通联数据通过机器学习,也能找到传统量化策略无法发现的市场联系。其中包括各家公司之间的资本关系、产品关系、竞争关系、上下游关系,也包括人与人之间的关系,例如管理团队和其他公司有没有关联,是否牵扯合作等。

未来量化研究员是否将成为一个被淘汰的职业?目前研究员的主要工作就是收集整理数据,变成投资决策,而之后这个工作将更多由机器完成。

“当初医疗科技发展时,人们也认为医生会被淘汰,但其实并不会。同理,研究员也会一直存在,但他们会更注重深入分析和调研,初级的数据搜集可以交给机器完成。”王政表示。

但当未来大数据平台并广泛应用后,是否会迅速挤压套利空间?这也是一个问题。回答根据网上资料整理

关于Twitter引擎起火系统失灵,如果成本现金流高达30亿美元和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。